Metamath Proof Explorer


Theorem eldm1cossres

Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018)

Ref Expression
Assertion eldm1cossres
|- ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. u e. A u R B ) )

Proof

Step Hyp Ref Expression
1 eldmcoss
 |-  ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. u u ( R |` A ) B ) )
2 brres
 |-  ( B e. V -> ( u ( R |` A ) B <-> ( u e. A /\ u R B ) ) )
3 2 exbidv
 |-  ( B e. V -> ( E. u u ( R |` A ) B <-> E. u ( u e. A /\ u R B ) ) )
4 1 3 bitrd
 |-  ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. u ( u e. A /\ u R B ) ) )
5 df-rex
 |-  ( E. u e. A u R B <-> E. u ( u e. A /\ u R B ) )
6 4 5 bitr4di
 |-  ( B e. V -> ( B e. dom ,~ ( R |` A ) <-> E. u e. A u R B ) )