Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eldm1cossres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑢 𝑅 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmcoss | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ) ) | |
2 | brres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) | |
3 | 2 | exbidv | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |
4 | 1 3 | bitrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |
5 | df-rex | ⊢ ( ∃ 𝑢 ∈ 𝐴 𝑢 𝑅 𝐵 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) | |
6 | 4 5 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑢 𝑅 𝐵 ) ) |