Metamath Proof Explorer


Theorem dmqseqim2

Description: Lemma for erim2 . (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion dmqseqim2 ( 𝑅𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( 𝐵 ∈ ran 𝑅𝐵 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 dmqseqim ( 𝑅𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ran 𝑅 = 𝐴 ) ) )
2 eleq2 ( ran 𝑅 = 𝐴 → ( 𝐵 ∈ ran 𝑅𝐵 𝐴 ) )
3 1 2 syl8 ( 𝑅𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( 𝐵 ∈ ran 𝑅𝐵 𝐴 ) ) ) )