Description: Lemma for erim2 . (Contributed by Peter Mazsa, 29-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dmqseqim2 | ⊢ ( 𝑅 ∈ 𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( 𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseqim | ⊢ ( 𝑅 ∈ 𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ran 𝑅 = ∪ 𝐴 ) ) ) | |
2 | eleq2 | ⊢ ( ran 𝑅 = ∪ 𝐴 → ( 𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴 ) ) | |
3 | 1 2 | syl8 | ⊢ ( 𝑅 ∈ 𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( 𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴 ) ) ) ) |