Step |
Hyp |
Ref |
Expression |
1 |
|
relcoels |
|- Rel ~ A |
2 |
1
|
a1i |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> Rel ~ A ) |
3 |
|
eqvrelrel |
|- ( EqvRel R -> Rel R ) |
4 |
3
|
ad2antrl |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> Rel R ) |
5 |
|
brcoels |
|- ( ( x e. _V /\ y e. _V ) -> ( x ~ A y <-> E. u e. A ( x e. u /\ y e. u ) ) ) |
6 |
5
|
el2v |
|- ( x ~ A y <-> E. u e. A ( x e. u /\ y e. u ) ) |
7 |
|
simpll |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> EqvRel R ) |
8 |
|
simprl |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> u e. A ) |
9 |
|
simplr |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> ( dom R /. R ) = A ) |
10 |
8 9
|
eleqtrrd |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> u e. ( dom R /. R ) ) |
11 |
|
simprr |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> x e. u ) |
12 |
|
eqvrelqsel |
|- ( ( EqvRel R /\ u e. ( dom R /. R ) /\ x e. u ) -> u = [ x ] R ) |
13 |
7 10 11 12
|
syl3anc |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> u = [ x ] R ) |
14 |
13
|
eleq2d |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> ( y e. u <-> y e. [ x ] R ) ) |
15 |
|
elecALTV |
|- ( ( x e. _V /\ y e. _V ) -> ( y e. [ x ] R <-> x R y ) ) |
16 |
15
|
el2v |
|- ( y e. [ x ] R <-> x R y ) |
17 |
14 16
|
bitrdi |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> ( y e. u <-> x R y ) ) |
18 |
17
|
anassrs |
|- ( ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ u e. A ) /\ x e. u ) -> ( y e. u <-> x R y ) ) |
19 |
18
|
pm5.32da |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ u e. A ) -> ( ( x e. u /\ y e. u ) <-> ( x e. u /\ x R y ) ) ) |
20 |
19
|
rexbidva |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. u e. A ( x e. u /\ x R y ) ) ) |
21 |
20
|
adantl |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. u e. A ( x e. u /\ x R y ) ) ) |
22 |
|
simpll |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ x R y ) -> EqvRel R ) |
23 |
|
simpr |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ x R y ) -> x R y ) |
24 |
22 23
|
eqvrelcl |
|- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ x R y ) -> x e. dom R ) |
25 |
24
|
adantll |
|- ( ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) /\ x R y ) -> x e. dom R ) |
26 |
|
eqvrelim |
|- ( EqvRel R -> dom R = ran R ) |
27 |
26
|
ad2antrl |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> dom R = ran R ) |
28 |
27
|
eleq2d |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. dom R <-> x e. ran R ) ) |
29 |
|
dmqseqim2 |
|- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ( x e. ran R <-> x e. U. A ) ) ) ) |
30 |
3 29
|
syl5 |
|- ( R e. V -> ( EqvRel R -> ( ( dom R /. R ) = A -> ( x e. ran R <-> x e. U. A ) ) ) ) |
31 |
30
|
imp32 |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. ran R <-> x e. U. A ) ) |
32 |
28 31
|
bitrd |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. dom R <-> x e. U. A ) ) |
33 |
|
eluni2 |
|- ( x e. U. A <-> E. u e. A x e. u ) |
34 |
32 33
|
bitrdi |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. dom R <-> E. u e. A x e. u ) ) |
35 |
34
|
adantr |
|- ( ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) /\ x R y ) -> ( x e. dom R <-> E. u e. A x e. u ) ) |
36 |
25 35
|
mpbid |
|- ( ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) /\ x R y ) -> E. u e. A x e. u ) |
37 |
36
|
ex |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x R y -> E. u e. A x e. u ) ) |
38 |
37
|
pm4.71rd |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x R y <-> ( E. u e. A x e. u /\ x R y ) ) ) |
39 |
|
r19.41v |
|- ( E. u e. A ( x e. u /\ x R y ) <-> ( E. u e. A x e. u /\ x R y ) ) |
40 |
38 39
|
bitr4di |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x R y <-> E. u e. A ( x e. u /\ x R y ) ) ) |
41 |
21 40
|
bitr4d |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> x R y ) ) |
42 |
6 41
|
syl5bb |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x ~ A y <-> x R y ) ) |
43 |
2 4 42
|
eqbrrdv |
|- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ~ A = R ) |
44 |
43
|
ex |
|- ( R e. V -> ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ~ A = R ) ) |