Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | eluni2 | |- ( A e. U. B <-> E. x e. B A e. x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom | |- ( E. x ( A e. x /\ x e. B ) <-> E. x ( x e. B /\ A e. x ) ) |
|
2 | eluni | |- ( A e. U. B <-> E. x ( A e. x /\ x e. B ) ) |
|
3 | df-rex | |- ( E. x e. B A e. x <-> E. x ( x e. B /\ A e. x ) ) |
|
4 | 1 2 3 | 3bitr4i | |- ( A e. U. B <-> E. x e. B A e. x ) |