Metamath Proof Explorer


Theorem eqvrelcl

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelcl.1
|- ( ph -> EqvRel R )
eqvrelcl.2
|- ( ph -> A R B )
Assertion eqvrelcl
|- ( ph -> A e. dom R )

Proof

Step Hyp Ref Expression
1 eqvrelcl.1
 |-  ( ph -> EqvRel R )
2 eqvrelcl.2
 |-  ( ph -> A R B )
3 eqvrelrel
 |-  ( EqvRel R -> Rel R )
4 1 3 syl
 |-  ( ph -> Rel R )
5 releldm
 |-  ( ( Rel R /\ A R B ) -> A e. dom R )
6 4 2 5 syl2anc
 |-  ( ph -> A e. dom R )