Metamath Proof Explorer


Theorem eqvrelcl

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelcl.1 φ EqvRel R
eqvrelcl.2 φ A R B
Assertion eqvrelcl φ A dom R

Proof

Step Hyp Ref Expression
1 eqvrelcl.1 φ EqvRel R
2 eqvrelcl.2 φ A R B
3 eqvrelrel EqvRel R Rel R
4 1 3 syl φ Rel R
5 releldm Rel R A R B A dom R
6 4 2 5 syl2anc φ A dom R