Metamath Proof Explorer


Theorem eqvrelcl

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelcl.1 ( 𝜑 → EqvRel 𝑅 )
eqvrelcl.2 ( 𝜑𝐴 𝑅 𝐵 )
Assertion eqvrelcl ( 𝜑𝐴 ∈ dom 𝑅 )

Proof

Step Hyp Ref Expression
1 eqvrelcl.1 ( 𝜑 → EqvRel 𝑅 )
2 eqvrelcl.2 ( 𝜑𝐴 𝑅 𝐵 )
3 eqvrelrel ( EqvRel 𝑅 → Rel 𝑅 )
4 1 3 syl ( 𝜑 → Rel 𝑅 )
5 releldm ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 )
6 4 2 5 syl2anc ( 𝜑𝐴 ∈ dom 𝑅 )