Metamath Proof Explorer
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eqvrelcl.1 |
⊢ ( 𝜑 → EqvRel 𝑅 ) |
|
|
eqvrelcl.2 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
|
Assertion |
eqvrelcl |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqvrelcl.1 |
⊢ ( 𝜑 → EqvRel 𝑅 ) |
| 2 |
|
eqvrelcl.2 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
| 3 |
|
eqvrelrel |
⊢ ( EqvRel 𝑅 → Rel 𝑅 ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → Rel 𝑅 ) |
| 5 |
|
releldm |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |
| 6 |
4 2 5
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |