Metamath Proof Explorer


Theorem eqvrelthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelthi.1 ( 𝜑 → EqvRel 𝑅 )
eqvrelthi.2 ( 𝜑𝐴 𝑅 𝐵 )
Assertion eqvrelthi ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 )

Proof

Step Hyp Ref Expression
1 eqvrelthi.1 ( 𝜑 → EqvRel 𝑅 )
2 eqvrelthi.2 ( 𝜑𝐴 𝑅 𝐵 )
3 1 2 eqvrelcl ( 𝜑𝐴 ∈ dom 𝑅 )
4 1 3 eqvrelth ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) )
5 2 4 mpbid ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 )