Metamath Proof Explorer


Theorem eqvrelthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelthi.1
|- ( ph -> EqvRel R )
eqvrelthi.2
|- ( ph -> A R B )
Assertion eqvrelthi
|- ( ph -> [ A ] R = [ B ] R )

Proof

Step Hyp Ref Expression
1 eqvrelthi.1
 |-  ( ph -> EqvRel R )
2 eqvrelthi.2
 |-  ( ph -> A R B )
3 1 2 eqvrelcl
 |-  ( ph -> A e. dom R )
4 1 3 eqvrelth
 |-  ( ph -> ( A R B <-> [ A ] R = [ B ] R ) )
5 2 4 mpbid
 |-  ( ph -> [ A ] R = [ B ] R )