Metamath Proof Explorer


Theorem eqvrelthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelthi.1 φ EqvRel R
eqvrelthi.2 φ A R B
Assertion eqvrelthi φ A R = B R

Proof

Step Hyp Ref Expression
1 eqvrelthi.1 φ EqvRel R
2 eqvrelthi.2 φ A R B
3 1 2 eqvrelcl φ A dom R
4 1 3 eqvrelth φ A R B A R = B R
5 2 4 mpbid φ A R = B R