Metamath Proof Explorer


Theorem eqvreldisj

Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Assertion eqvreldisj EqvRel R A R = B R A R B R =

Proof

Step Hyp Ref Expression
1 neq0 ¬ A R B R = x x A R B R
2 simpl EqvRel R x A R B R EqvRel R
3 elinel1 x A R B R x A R
4 3 adantl EqvRel R x A R B R x A R
5 ecexr x A R A V
6 4 5 syl EqvRel R x A R B R A V
7 vex x V
8 elecALTV A V x V x A R A R x
9 6 7 8 sylancl EqvRel R x A R B R x A R A R x
10 4 9 mpbid EqvRel R x A R B R A R x
11 elinel2 x A R B R x B R
12 11 adantl EqvRel R x A R B R x B R
13 ecexr x B R B V
14 12 13 syl EqvRel R x A R B R B V
15 elecALTV B V x V x B R B R x
16 14 7 15 sylancl EqvRel R x A R B R x B R B R x
17 12 16 mpbid EqvRel R x A R B R B R x
18 2 10 17 eqvreltr4d EqvRel R x A R B R A R B
19 2 18 eqvrelthi EqvRel R x A R B R A R = B R
20 19 ex EqvRel R x A R B R A R = B R
21 20 exlimdv EqvRel R x x A R B R A R = B R
22 1 21 syl5bi EqvRel R ¬ A R B R = A R = B R
23 22 orrd EqvRel R A R B R = A R = B R
24 23 orcomd EqvRel R A R = B R A R B R =