Metamath Proof Explorer


Theorem eqvreltr4d

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvreltr4d.1 φEqvRelR
eqvreltr4d.2 φARB
eqvreltr4d.3 φCRB
Assertion eqvreltr4d φARC

Proof

Step Hyp Ref Expression
1 eqvreltr4d.1 φEqvRelR
2 eqvreltr4d.2 φARB
3 eqvreltr4d.3 φCRB
4 1 3 eqvrelsym φBRC
5 1 2 4 eqvreltrd φARC