Metamath Proof Explorer


Theorem eqvreltr4d

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvreltr4d.1 φ EqvRel R
eqvreltr4d.2 φ A R B
eqvreltr4d.3 φ C R B
Assertion eqvreltr4d φ A R C

Proof

Step Hyp Ref Expression
1 eqvreltr4d.1 φ EqvRel R
2 eqvreltr4d.2 φ A R B
3 eqvreltr4d.3 φ C R B
4 1 3 eqvrelsym φ B R C
5 1 2 4 eqvreltrd φ A R C