Metamath Proof Explorer


Theorem eqvreltrd

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvreltrd.1 φ EqvRel R
eqvreltrd.2 φ A R B
eqvreltrd.3 φ B R C
Assertion eqvreltrd φ A R C

Proof

Step Hyp Ref Expression
1 eqvreltrd.1 φ EqvRel R
2 eqvreltrd.2 φ A R B
3 eqvreltrd.3 φ B R C
4 1 eqvreltr φ A R B B R C A R C
5 2 3 4 mp2and φ A R C