Metamath Proof Explorer
Description: A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eqvreltrd.1 |
⊢ ( 𝜑 → EqvRel 𝑅 ) |
|
|
eqvreltrd.2 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
|
|
eqvreltrd.3 |
⊢ ( 𝜑 → 𝐵 𝑅 𝐶 ) |
|
Assertion |
eqvreltrd |
⊢ ( 𝜑 → 𝐴 𝑅 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqvreltrd.1 |
⊢ ( 𝜑 → EqvRel 𝑅 ) |
| 2 |
|
eqvreltrd.2 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
| 3 |
|
eqvreltrd.3 |
⊢ ( 𝜑 → 𝐵 𝑅 𝐶 ) |
| 4 |
1
|
eqvreltr |
⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| 5 |
2 3 4
|
mp2and |
⊢ ( 𝜑 → 𝐴 𝑅 𝐶 ) |