Metamath Proof Explorer


Theorem eqvreltrd

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvreltrd.1
|- ( ph -> EqvRel R )
eqvreltrd.2
|- ( ph -> A R B )
eqvreltrd.3
|- ( ph -> B R C )
Assertion eqvreltrd
|- ( ph -> A R C )

Proof

Step Hyp Ref Expression
1 eqvreltrd.1
 |-  ( ph -> EqvRel R )
2 eqvreltrd.2
 |-  ( ph -> A R B )
3 eqvreltrd.3
 |-  ( ph -> B R C )
4 1 eqvreltr
 |-  ( ph -> ( ( A R B /\ B R C ) -> A R C ) )
5 2 3 4 mp2and
 |-  ( ph -> A R C )