Metamath Proof Explorer
Description: A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eqvreltr4d.1 |
|- ( ph -> EqvRel R ) |
|
|
eqvreltr4d.2 |
|- ( ph -> A R B ) |
|
|
eqvreltr4d.3 |
|- ( ph -> C R B ) |
|
Assertion |
eqvreltr4d |
|- ( ph -> A R C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqvreltr4d.1 |
|- ( ph -> EqvRel R ) |
2 |
|
eqvreltr4d.2 |
|- ( ph -> A R B ) |
3 |
|
eqvreltr4d.3 |
|- ( ph -> C R B ) |
4 |
1 3
|
eqvrelsym |
|- ( ph -> B R C ) |
5 |
1 2 4
|
eqvreltrd |
|- ( ph -> A R C ) |