Metamath Proof Explorer


Theorem eqvrelsym

Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelsym.1
|- ( ph -> EqvRel R )
eqvrelsym.2
|- ( ph -> A R B )
Assertion eqvrelsym
|- ( ph -> B R A )

Proof

Step Hyp Ref Expression
1 eqvrelsym.1
 |-  ( ph -> EqvRel R )
2 eqvrelsym.2
 |-  ( ph -> A R B )
3 eqvrelrel
 |-  ( EqvRel R -> Rel R )
4 relbrcnvg
 |-  ( Rel R -> ( B `' R A <-> A R B ) )
5 1 3 4 3syl
 |-  ( ph -> ( B `' R A <-> A R B ) )
6 2 5 mpbird
 |-  ( ph -> B `' R A )
7 eqvrelsymrel
 |-  ( EqvRel R -> SymRel R )
8 dfsymrel2
 |-  ( SymRel R <-> ( `' R C_ R /\ Rel R ) )
9 8 simplbi
 |-  ( SymRel R -> `' R C_ R )
10 1 7 9 3syl
 |-  ( ph -> `' R C_ R )
11 10 ssbrd
 |-  ( ph -> ( B `' R A -> B R A ) )
12 6 11 mpd
 |-  ( ph -> B R A )