Step |
Hyp |
Ref |
Expression |
1 |
|
eqvrelsym.1 |
|- ( ph -> EqvRel R ) |
2 |
|
eqvrelsym.2 |
|- ( ph -> A R B ) |
3 |
|
eqvrelrel |
|- ( EqvRel R -> Rel R ) |
4 |
|
relbrcnvg |
|- ( Rel R -> ( B `' R A <-> A R B ) ) |
5 |
1 3 4
|
3syl |
|- ( ph -> ( B `' R A <-> A R B ) ) |
6 |
2 5
|
mpbird |
|- ( ph -> B `' R A ) |
7 |
|
eqvrelsymrel |
|- ( EqvRel R -> SymRel R ) |
8 |
|
dfsymrel2 |
|- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
9 |
8
|
simplbi |
|- ( SymRel R -> `' R C_ R ) |
10 |
1 7 9
|
3syl |
|- ( ph -> `' R C_ R ) |
11 |
10
|
ssbrd |
|- ( ph -> ( B `' R A -> B R A ) ) |
12 |
6 11
|
mpd |
|- ( ph -> B R A ) |