Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelrel | |- ( EqvRel R -> Rel R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrel2 | |- ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
|
| 2 | 1 | simprbi | |- ( EqvRel R -> Rel R ) |