Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelrel | |- ( EqvRel R -> Rel R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrel2 | |- ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
|
2 | 1 | simprbi | |- ( EqvRel R -> Rel R ) |