Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrel2 | ⊢ ( EqvRel 𝑅 ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) | |
| 2 | 1 | simprbi | ⊢ ( EqvRel 𝑅 → Rel 𝑅 ) |