Metamath Proof Explorer


Theorem eqvrelrel

Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019)

Ref Expression
Assertion eqvrelrel EqvRel R Rel R

Proof

Step Hyp Ref Expression
1 dfeqvrel2 EqvRel R I dom R R R -1 R R R R Rel R
2 1 simprbi EqvRel R Rel R