Metamath Proof Explorer


Theorem eqvrelrefrel

Description: An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion eqvrelrefrel
|- ( EqvRel R -> RefRel R )

Proof

Step Hyp Ref Expression
1 df-eqvrel
 |-  ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) )
2 1 simp1bi
 |-  ( EqvRel R -> RefRel R )