Description: An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelrefrel | |- ( EqvRel R -> RefRel R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrel | |- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) ) |
|
2 | 1 | simp1bi | |- ( EqvRel R -> RefRel R ) |