Metamath Proof Explorer


Theorem eqvrelsym

Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelsym.1 φ EqvRel R
eqvrelsym.2 φ A R B
Assertion eqvrelsym φ B R A

Proof

Step Hyp Ref Expression
1 eqvrelsym.1 φ EqvRel R
2 eqvrelsym.2 φ A R B
3 eqvrelrel EqvRel R Rel R
4 relbrcnvg Rel R B R -1 A A R B
5 1 3 4 3syl φ B R -1 A A R B
6 2 5 mpbird φ B R -1 A
7 eqvrelsymrel EqvRel R SymRel R
8 dfsymrel2 SymRel R R -1 R Rel R
9 8 simplbi SymRel R R -1 R
10 1 7 9 3syl φ R -1 R
11 10 ssbrd φ B R -1 A B R A
12 6 11 mpd φ B R A