Metamath Proof Explorer


Theorem eqvrelsym

Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelsym.1 φEqvRelR
eqvrelsym.2 φARB
Assertion eqvrelsym φBRA

Proof

Step Hyp Ref Expression
1 eqvrelsym.1 φEqvRelR
2 eqvrelsym.2 φARB
3 eqvrelrel EqvRelRRelR
4 relbrcnvg RelRBR-1AARB
5 1 3 4 3syl φBR-1AARB
6 2 5 mpbird φBR-1A
7 eqvrelsymrel EqvRelRSymRelR
8 dfsymrel2 SymRelRR-1RRelR
9 8 simplbi SymRelRR-1R
10 1 7 9 3syl φR-1R
11 10 ssbrd φBR-1ABRA
12 6 11 mpd φBRA