Metamath Proof Explorer


Theorem eqvrelsymb

Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.)

Ref Expression
Hypothesis eqvrelsymb.1 φEqvRelR
Assertion eqvrelsymb φARBBRA

Proof

Step Hyp Ref Expression
1 eqvrelsymb.1 φEqvRelR
2 1 adantr φARBEqvRelR
3 simpr φARBARB
4 2 3 eqvrelsym φARBBRA
5 1 adantr φBRAEqvRelR
6 simpr φBRABRA
7 5 6 eqvrelsym φBRAARB
8 4 7 impbida φARBBRA