Metamath Proof Explorer


Theorem eqvreltr

Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypothesis eqvreltr.1 φ EqvRel R
Assertion eqvreltr φ A R B B R C A R C

Proof

Step Hyp Ref Expression
1 eqvreltr.1 φ EqvRel R
2 eqvrelrel EqvRel R Rel R
3 1 2 syl φ Rel R
4 simpr A R B B R C B R C
5 brrelex1 Rel R B R C B V
6 3 4 5 syl2an φ A R B B R C B V
7 simpr φ A R B B R C A R B B R C
8 breq2 x = B A R x A R B
9 breq1 x = B x R C B R C
10 8 9 anbi12d x = B A R x x R C A R B B R C
11 6 7 10 spcedv φ A R B B R C x A R x x R C
12 simpl A R B B R C A R B
13 brrelex1 Rel R A R B A V
14 3 12 13 syl2an φ A R B B R C A V
15 brrelex2 Rel R B R C C V
16 3 4 15 syl2an φ A R B B R C C V
17 brcog A V C V A R R C x A R x x R C
18 14 16 17 syl2anc φ A R B B R C A R R C x A R x x R C
19 11 18 mpbird φ A R B B R C A R R C
20 19 ex φ A R B B R C A R R C
21 dfeqvrel2 EqvRel R I dom R R R -1 R R R R Rel R
22 21 simplbi EqvRel R I dom R R R -1 R R R R
23 22 simp3d EqvRel R R R R
24 1 23 syl φ R R R
25 24 ssbrd φ A R R C A R C
26 20 25 syld φ A R B B R C A R C