Metamath Proof Explorer


Theorem eqvrelref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelref.1
|- ( ph -> EqvRel R )
eqvrelref.2
|- ( ph -> A e. dom R )
Assertion eqvrelref
|- ( ph -> A R A )

Proof

Step Hyp Ref Expression
1 eqvrelref.1
 |-  ( ph -> EqvRel R )
2 eqvrelref.2
 |-  ( ph -> A e. dom R )
3 eqvrelrel
 |-  ( EqvRel R -> Rel R )
4 releldmb
 |-  ( Rel R -> ( A e. dom R <-> E. x A R x ) )
5 1 3 4 3syl
 |-  ( ph -> ( A e. dom R <-> E. x A R x ) )
6 2 5 mpbid
 |-  ( ph -> E. x A R x )
7 1 adantr
 |-  ( ( ph /\ A R x ) -> EqvRel R )
8 simpr
 |-  ( ( ph /\ A R x ) -> A R x )
9 7 8 8 eqvreltr4d
 |-  ( ( ph /\ A R x ) -> A R A )
10 6 9 exlimddv
 |-  ( ph -> A R A )