Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvrelref.1 | ||
| eqvrelref.2 | |||
| Assertion | eqvrelref |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelref.1 | ||
| 2 | eqvrelref.2 | ||
| 3 | eqvrelrel | ||
| 4 | releldmb | ||
| 5 | 1 3 4 | 3syl | |
| 6 | 2 5 | mpbid | |
| 7 | 1 | adantr | |
| 8 | simpr | ||
| 9 | 7 8 8 | eqvreltr4d | |
| 10 | 6 9 | exlimddv |