Metamath Proof Explorer


Theorem eqvrelref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelref.1 φ EqvRel R
eqvrelref.2 φ A dom R
Assertion eqvrelref φ A R A

Proof

Step Hyp Ref Expression
1 eqvrelref.1 φ EqvRel R
2 eqvrelref.2 φ A dom R
3 eqvrelrel EqvRel R Rel R
4 releldmb Rel R A dom R x A R x
5 1 3 4 3syl φ A dom R x A R x
6 2 5 mpbid φ x A R x
7 1 adantr φ A R x EqvRel R
8 simpr φ A R x A R x
9 7 8 8 eqvreltr4d φ A R x A R A
10 6 9 exlimddv φ A R A