Metamath Proof Explorer


Theorem releldmb

Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015)

Ref Expression
Assertion releldmb RelRAdomRxARx

Proof

Step Hyp Ref Expression
1 eldmg AdomRAdomRxARx
2 1 ibi AdomRxARx
3 releldm RelRARxAdomR
4 3 ex RelRARxAdomR
5 4 exlimdv RelRxARxAdomR
6 2 5 impbid2 RelRAdomRxARx