Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations
eqvrelref
Metamath Proof Explorer
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M
of Enderton p. 56. (Contributed by Mario Carneiro , 6-May-2013)
(Revised by Mario Carneiro , 12-Aug-2015) (Revised by Peter Mazsa , 2-Jun-2019)
Ref
Expression
Hypotheses
eqvrelref.1
⊢ ( 𝜑 → EqvRel 𝑅 )
eqvrelref.2
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 )
Assertion
eqvrelref
⊢ ( 𝜑 → 𝐴 𝑅 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
eqvrelref.1
⊢ ( 𝜑 → EqvRel 𝑅 )
2
eqvrelref.2
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 )
3
eqvrelrel
⊢ ( EqvRel 𝑅 → Rel 𝑅 )
4
releldmb
⊢ ( Rel 𝑅 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) )
5
1 3 4
3syl
⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) )
6
2 5
mpbid
⊢ ( 𝜑 → ∃ 𝑥 𝐴 𝑅 𝑥 )
7
1
adantr
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → EqvRel 𝑅 )
8
simpr
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 )
9
7 8 8
eqvreltr4d
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → 𝐴 𝑅 𝐴 )
10
6 9
exlimddv
⊢ ( 𝜑 → 𝐴 𝑅 𝐴 )