Step |
Hyp |
Ref |
Expression |
1 |
|
eqvrelth.1 |
⊢ ( 𝜑 → EqvRel 𝑅 ) |
2 |
|
eqvrelth.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |
3 |
1
|
eqvrelsymb |
⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) ) |
4 |
3
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 𝑅 𝐴 ) |
5 |
1
|
eqvreltr |
⊢ ( 𝜑 → ( ( 𝐵 𝑅 𝐴 ∧ 𝐴 𝑅 𝑥 ) → 𝐵 𝑅 𝑥 ) ) |
6 |
5
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝐵 𝑅 𝐴 ) ∧ 𝐴 𝑅 𝑥 ) → 𝐵 𝑅 𝑥 ) |
7 |
4 6
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) ∧ 𝐴 𝑅 𝑥 ) → 𝐵 𝑅 𝑥 ) |
8 |
1
|
eqvreltr |
⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 ) ) |
9 |
8
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) ∧ 𝐵 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 ) |
10 |
7 9
|
impbida |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 𝑅 𝑥 ↔ 𝐵 𝑅 𝑥 ) ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |
13 |
|
elecg |
⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ dom 𝑅 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
14 |
11 12 13
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
15 |
|
eqvrelrel |
⊢ ( EqvRel 𝑅 → Rel 𝑅 ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → Rel 𝑅 ) |
17 |
|
brrelex2 |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) |
19 |
|
elecg |
⊢ ( ( 𝑥 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
20 |
11 18 19
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
21 |
10 14 20
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝑥 ∈ [ 𝐵 ] 𝑅 ) ) |
22 |
21
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → EqvRel 𝑅 ) |
24 |
1 2
|
eqvrelref |
⊢ ( 𝜑 → 𝐴 𝑅 𝐴 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 𝑅 𝐴 ) |
26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 ∈ dom 𝑅 ) |
27 |
|
elecALTV |
⊢ ( ( 𝐴 ∈ dom 𝑅 ∧ 𝐴 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) |
28 |
26 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) |
29 |
25 28
|
mpbird |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
31 |
29 30
|
eleqtrd |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 ∈ [ 𝐵 ] 𝑅 ) |
32 |
30
|
dmec2d |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅 ) ) |
33 |
26 32
|
mpbid |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐵 ∈ dom 𝑅 ) |
34 |
|
elecALTV |
⊢ ( ( 𝐵 ∈ dom 𝑅 ∧ 𝐴 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |
35 |
33 26 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |
36 |
31 35
|
mpbid |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐵 𝑅 𝐴 ) |
37 |
23 36
|
eqvrelsym |
⊢ ( ( 𝜑 ∧ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) → 𝐴 𝑅 𝐵 ) |
38 |
22 37
|
impbida |
⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |