Description: B and C are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020) (Revised by Peter Mazsa, 5-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | brcoels | |- ( ( B e. V /\ C e. W ) -> ( B ~ A C <-> E. u e. A ( B e. u /\ C e. u ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |- ( x = B -> ( x e. u <-> B e. u ) ) |
|
2 | eleq1 | |- ( y = C -> ( y e. u <-> C e. u ) ) |
|
3 | 1 2 | bi2anan9 | |- ( ( x = B /\ y = C ) -> ( ( x e. u /\ y e. u ) <-> ( B e. u /\ C e. u ) ) ) |
4 | 3 | rexbidv | |- ( ( x = B /\ y = C ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. u e. A ( B e. u /\ C e. u ) ) ) |
5 | dfcoels | |- ~ A = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
6 | 4 5 | brabga | |- ( ( B e. V /\ C e. W ) -> ( B ~ A C <-> E. u e. A ( B e. u /\ C e. u ) ) ) |