Metamath Proof Explorer


Theorem brcoels

Description: B and C are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020) (Revised by Peter Mazsa, 5-Oct-2021)

Ref Expression
Assertion brcoels
|- ( ( B e. V /\ C e. W ) -> ( B ~ A C <-> E. u e. A ( B e. u /\ C e. u ) ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( x = B -> ( x e. u <-> B e. u ) )
2 eleq1
 |-  ( y = C -> ( y e. u <-> C e. u ) )
3 1 2 bi2anan9
 |-  ( ( x = B /\ y = C ) -> ( ( x e. u /\ y e. u ) <-> ( B e. u /\ C e. u ) ) )
4 3 rexbidv
 |-  ( ( x = B /\ y = C ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. u e. A ( B e. u /\ C e. u ) ) )
5 dfcoels
 |-  ~ A = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) }
6 4 5 brabga
 |-  ( ( B e. V /\ C e. W ) -> ( B ~ A C <-> E. u e. A ( B e. u /\ C e. u ) ) )