Metamath Proof Explorer


Theorem brcoels

Description: B and C are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020) (Revised by Peter Mazsa, 5-Oct-2021)

Ref Expression
Assertion brcoels B V C W B A C u A B u C u

Proof

Step Hyp Ref Expression
1 eleq1 x = B x u B u
2 eleq1 y = C y u C u
3 1 2 bi2anan9 x = B y = C x u y u B u C u
4 3 rexbidv x = B y = C u A x u y u u A B u C u
5 dfcoels A = x y | u A x u y u
6 4 5 brabga B V C W B A C u A B u C u