Metamath Proof Explorer


Theorem dfcoels

Description: Alternate definition of the class of coelements on the class A . (Contributed by Peter Mazsa, 20-Apr-2019)

Ref Expression
Assertion dfcoels A = x y | u A x u y u

Proof

Step Hyp Ref Expression
1 df-coels A = E -1 A
2 1cossres E -1 A = x y | u A u E -1 x u E -1 y
3 brcnvep u V u E -1 x x u
4 3 elv u E -1 x x u
5 brcnvep u V u E -1 y y u
6 5 elv u E -1 y y u
7 4 6 anbi12i u E -1 x u E -1 y x u y u
8 7 rexbii u A u E -1 x u E -1 y u A x u y u
9 8 opabbii x y | u A u E -1 x u E -1 y = x y | u A x u y u
10 1 2 9 3eqtri A = x y | u A x u y u