| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-coels |
⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) |
| 2 |
|
1cossres |
⊢ ≀ ( ◡ E ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) } |
| 3 |
|
brcnvep |
⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) ) |
| 4 |
3
|
elv |
⊢ ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) |
| 5 |
|
brcnvep |
⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑢 ) ) |
| 6 |
5
|
elv |
⊢ ( 𝑢 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑢 ) |
| 7 |
4 6
|
anbi12i |
⊢ ( ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ) |
| 8 |
7
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ) |
| 9 |
8
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
| 10 |
1 2 9
|
3eqtri |
⊢ ∼ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |