Metamath Proof Explorer


Theorem dfcoels

Description: Alternate definition of the class of coelements on the class A . (Contributed by Peter Mazsa, 20-Apr-2019)

Ref Expression
Assertion dfcoels 𝐴 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }

Proof

Step Hyp Ref Expression
1 df-coels 𝐴 = ≀ ( E ↾ 𝐴 )
2 1cossres ≀ ( E ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 E 𝑥𝑢 E 𝑦 ) }
3 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝑥𝑥𝑢 ) )
4 3 elv ( 𝑢 E 𝑥𝑥𝑢 )
5 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝑦𝑦𝑢 ) )
6 5 elv ( 𝑢 E 𝑦𝑦𝑢 )
7 4 6 anbi12i ( ( 𝑢 E 𝑥𝑢 E 𝑦 ) ↔ ( 𝑥𝑢𝑦𝑢 ) )
8 7 rexbii ( ∃ 𝑢𝐴 ( 𝑢 E 𝑥𝑢 E 𝑦 ) ↔ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) )
9 8 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 E 𝑥𝑢 E 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
10 1 2 9 3eqtri 𝐴 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }