Metamath Proof Explorer


Theorem 1cossres

Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019)

Ref Expression
Assertion 1cossres ≀ ( 𝑅𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) }

Proof

Step Hyp Ref Expression
1 df-coss ≀ ( 𝑅𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝑥𝑢 ( 𝑅𝐴 ) 𝑦 ) }
2 df-rex ( ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) ↔ ∃ 𝑢 ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) ) )
3 anandi ( ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) ) ↔ ( ( 𝑢𝐴𝑢 𝑅 𝑥 ) ∧ ( 𝑢𝐴𝑢 𝑅 𝑦 ) ) )
4 brres ( 𝑥 ∈ V → ( 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ( 𝑢𝐴𝑢 𝑅 𝑥 ) ) )
5 4 elv ( 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ( 𝑢𝐴𝑢 𝑅 𝑥 ) )
6 brres ( 𝑦 ∈ V → ( 𝑢 ( 𝑅𝐴 ) 𝑦 ↔ ( 𝑢𝐴𝑢 𝑅 𝑦 ) ) )
7 6 elv ( 𝑢 ( 𝑅𝐴 ) 𝑦 ↔ ( 𝑢𝐴𝑢 𝑅 𝑦 ) )
8 5 7 anbi12i ( ( 𝑢 ( 𝑅𝐴 ) 𝑥𝑢 ( 𝑅𝐴 ) 𝑦 ) ↔ ( ( 𝑢𝐴𝑢 𝑅 𝑥 ) ∧ ( 𝑢𝐴𝑢 𝑅 𝑦 ) ) )
9 3 8 bitr4i ( ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) ) ↔ ( 𝑢 ( 𝑅𝐴 ) 𝑥𝑢 ( 𝑅𝐴 ) 𝑦 ) )
10 9 exbii ( ∃ 𝑢 ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) ) ↔ ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝑥𝑢 ( 𝑅𝐴 ) 𝑦 ) )
11 2 10 bitri ( ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝑥𝑢 ( 𝑅𝐴 ) 𝑦 ) )
12 11 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝑥𝑢 ( 𝑅𝐴 ) 𝑦 ) }
13 1 12 eqtr4i ≀ ( 𝑅𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) }