Step |
Hyp |
Ref |
Expression |
1 |
|
df-coss |
|- ,~ ( R |` A ) = { <. x , y >. | E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) } |
2 |
|
df-rex |
|- ( E. u e. A ( u R x /\ u R y ) <-> E. u ( u e. A /\ ( u R x /\ u R y ) ) ) |
3 |
|
anandi |
|- ( ( u e. A /\ ( u R x /\ u R y ) ) <-> ( ( u e. A /\ u R x ) /\ ( u e. A /\ u R y ) ) ) |
4 |
|
brres |
|- ( x e. _V -> ( u ( R |` A ) x <-> ( u e. A /\ u R x ) ) ) |
5 |
4
|
elv |
|- ( u ( R |` A ) x <-> ( u e. A /\ u R x ) ) |
6 |
|
brres |
|- ( y e. _V -> ( u ( R |` A ) y <-> ( u e. A /\ u R y ) ) ) |
7 |
6
|
elv |
|- ( u ( R |` A ) y <-> ( u e. A /\ u R y ) ) |
8 |
5 7
|
anbi12i |
|- ( ( u ( R |` A ) x /\ u ( R |` A ) y ) <-> ( ( u e. A /\ u R x ) /\ ( u e. A /\ u R y ) ) ) |
9 |
3 8
|
bitr4i |
|- ( ( u e. A /\ ( u R x /\ u R y ) ) <-> ( u ( R |` A ) x /\ u ( R |` A ) y ) ) |
10 |
9
|
exbii |
|- ( E. u ( u e. A /\ ( u R x /\ u R y ) ) <-> E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) ) |
11 |
2 10
|
bitri |
|- ( E. u e. A ( u R x /\ u R y ) <-> E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) ) |
12 |
11
|
opabbii |
|- { <. x , y >. | E. u e. A ( u R x /\ u R y ) } = { <. x , y >. | E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) } |
13 |
1 12
|
eqtr4i |
|- ,~ ( R |` A ) = { <. x , y >. | E. u e. A ( u R x /\ u R y ) } |