Description: B and C are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020) (Revised by Peter Mazsa, 5-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | brcoels | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ∼ 𝐴 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢 ) ) | |
2 | eleq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) | |
3 | 1 2 | bi2anan9 | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐶 ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ( 𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢 ) ) ) |
4 | 3 | rexbidv | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐶 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢 ) ) ) |
5 | dfcoels | ⊢ ∼ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
6 | 4 5 | brabga | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ∼ 𝐴 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢 ) ) ) |