Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( A /. R ) = ( A /. R ) |
2 |
|
eleq2 |
|- ( [ x ] R = B -> ( C e. [ x ] R <-> C e. B ) ) |
3 |
|
eqeq1 |
|- ( [ x ] R = B -> ( [ x ] R = [ C ] R <-> B = [ C ] R ) ) |
4 |
2 3
|
imbi12d |
|- ( [ x ] R = B -> ( ( C e. [ x ] R -> [ x ] R = [ C ] R ) <-> ( C e. B -> B = [ C ] R ) ) ) |
5 |
|
elecALTV |
|- ( ( x e. _V /\ C e. [ x ] R ) -> ( C e. [ x ] R <-> x R C ) ) |
6 |
5
|
el2v1 |
|- ( C e. [ x ] R -> ( C e. [ x ] R <-> x R C ) ) |
7 |
6
|
ibi |
|- ( C e. [ x ] R -> x R C ) |
8 |
|
simpll |
|- ( ( ( EqvRel R /\ x e. A ) /\ x R C ) -> EqvRel R ) |
9 |
|
simpr |
|- ( ( ( EqvRel R /\ x e. A ) /\ x R C ) -> x R C ) |
10 |
8 9
|
eqvrelthi |
|- ( ( ( EqvRel R /\ x e. A ) /\ x R C ) -> [ x ] R = [ C ] R ) |
11 |
10
|
ex |
|- ( ( EqvRel R /\ x e. A ) -> ( x R C -> [ x ] R = [ C ] R ) ) |
12 |
7 11
|
syl5 |
|- ( ( EqvRel R /\ x e. A ) -> ( C e. [ x ] R -> [ x ] R = [ C ] R ) ) |
13 |
1 4 12
|
ectocld |
|- ( ( EqvRel R /\ B e. ( A /. R ) ) -> ( C e. B -> B = [ C ] R ) ) |
14 |
13
|
3impia |
|- ( ( EqvRel R /\ B e. ( A /. R ) /\ C e. B ) -> B = [ C ] R ) |