Metamath Proof Explorer


Theorem eqvrelqsel

Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 28-Dec-2019)

Ref Expression
Assertion eqvrelqsel EqvRel R B A / R C B B = C R

Proof

Step Hyp Ref Expression
1 eqid A / R = A / R
2 eleq2 x R = B C x R C B
3 eqeq1 x R = B x R = C R B = C R
4 2 3 imbi12d x R = B C x R x R = C R C B B = C R
5 elecALTV x V C x R C x R x R C
6 5 el2v1 C x R C x R x R C
7 6 ibi C x R x R C
8 simpll EqvRel R x A x R C EqvRel R
9 simpr EqvRel R x A x R C x R C
10 8 9 eqvrelthi EqvRel R x A x R C x R = C R
11 10 ex EqvRel R x A x R C x R = C R
12 7 11 syl5 EqvRel R x A C x R x R = C R
13 1 4 12 ectocld EqvRel R B A / R C B B = C R
14 13 3impia EqvRel R B A / R C B B = C R