Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 28-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelqsel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eleq2 | |
|
3 | eqeq1 | |
|
4 | 2 3 | imbi12d | |
5 | elecALTV | |
|
6 | 5 | el2v1 | |
7 | 6 | ibi | |
8 | simpll | |
|
9 | simpr | |
|
10 | 8 9 | eqvrelthi | |
11 | 10 | ex | |
12 | 7 11 | syl5 | |
13 | 1 4 12 | ectocld | |
14 | 13 | 3impia | |