Metamath Proof Explorer


Theorem eqvrelqsel

Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 28-Dec-2019)

Ref Expression
Assertion eqvrelqsel EqvRelRBA/RCBB=CR

Proof

Step Hyp Ref Expression
1 eqid A/R=A/R
2 eleq2 xR=BCxRCB
3 eqeq1 xR=BxR=CRB=CR
4 2 3 imbi12d xR=BCxRxR=CRCBB=CR
5 elecALTV xVCxRCxRxRC
6 5 el2v1 CxRCxRxRC
7 6 ibi CxRxRC
8 simpll EqvRelRxAxRCEqvRelR
9 simpr EqvRelRxAxRCxRC
10 8 9 eqvrelthi EqvRelRxAxRCxR=CR
11 10 ex EqvRelRxAxRCxR=CR
12 7 11 syl5 EqvRelRxACxRxR=CR
13 1 4 12 ectocld EqvRelRBA/RCBB=CR
14 13 3impia EqvRelRBA/RCBB=CR