Metamath Proof Explorer


Theorem eqvrelcoss

Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 20-Dec-2021)

Ref Expression
Assertion eqvrelcoss EqvRel R TrRel R

Proof

Step Hyp Ref Expression
1 df-eqvrel EqvRel R RefRel R SymRel R TrRel R
2 refrelcoss RefRel R
3 symrelcoss SymRel R
4 2 3 triantru3 TrRel R RefRel R SymRel R TrRel R
5 1 4 bitr4i EqvRel R TrRel R