Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity
refrelcoss
Next ⟩
Converse reflexivity
Metamath Proof Explorer
Ascii
Unicode
Theorem
refrelcoss
Description:
The class of cosets by
R
is reflexive.
(Contributed by
Peter Mazsa
, 4-Jul-2020)
Ref
Expression
Assertion
refrelcoss
⊢
RefRel
≀
R
Proof
Step
Hyp
Ref
Expression
1
refrelcoss2
⊢
I
∩
dom
⁡
≀
R
×
ran
⁡
≀
R
⊆
≀
R
∧
Rel
⁡
≀
R
2
dfrefrel2
⊢
RefRel
≀
R
↔
I
∩
dom
⁡
≀
R
×
ran
⁡
≀
R
⊆
≀
R
∧
Rel
⁡
≀
R
3
1
2
mpbir
⊢
RefRel
≀
R