Metamath Proof Explorer


Theorem refrelcoss

Description: The class of cosets by R is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020)

Ref Expression
Assertion refrelcoss RefRel ≀ 𝑅

Proof

Step Hyp Ref Expression
1 refrelcoss2 ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )
2 dfrefrel2 ( RefRel ≀ 𝑅 ↔ ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) )
3 1 2 mpbir RefRel ≀ 𝑅