Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 20-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelcoss | |- ( EqvRel ,~ R <-> TrRel ,~ R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrel | |- ( EqvRel ,~ R <-> ( RefRel ,~ R /\ SymRel ,~ R /\ TrRel ,~ R ) ) |
|
2 | refrelcoss | |- RefRel ,~ R |
|
3 | symrelcoss | |- SymRel ,~ R |
|
4 | 2 3 | triantru3 | |- ( TrRel ,~ R <-> ( RefRel ,~ R /\ SymRel ,~ R /\ TrRel ,~ R ) ) |
5 | 1 4 | bitr4i | |- ( EqvRel ,~ R <-> TrRel ,~ R ) |