Metamath Proof Explorer
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 20-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
eqvrelcoss |
⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-eqvrel |
⊢ ( EqvRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅 ) ) |
2 |
|
refrelcoss |
⊢ RefRel ≀ 𝑅 |
3 |
|
symrelcoss |
⊢ SymRel ≀ 𝑅 |
4 |
2 3
|
triantru3 |
⊢ ( TrRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅 ) ) |
5 |
1 4
|
bitr4i |
⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅 ) |