| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 𝐴  /  𝑅 )  =  ( 𝐴  /  𝑅 ) | 
						
							| 2 |  | eleq2 | ⊢ ( [ 𝑥 ] 𝑅  =  𝐵  →  ( 𝐶  ∈  [ 𝑥 ] 𝑅  ↔  𝐶  ∈  𝐵 ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( [ 𝑥 ] 𝑅  =  𝐵  →  ( [ 𝑥 ] 𝑅  =  [ 𝐶 ] 𝑅  ↔  𝐵  =  [ 𝐶 ] 𝑅 ) ) | 
						
							| 4 | 2 3 | imbi12d | ⊢ ( [ 𝑥 ] 𝑅  =  𝐵  →  ( ( 𝐶  ∈  [ 𝑥 ] 𝑅  →  [ 𝑥 ] 𝑅  =  [ 𝐶 ] 𝑅 )  ↔  ( 𝐶  ∈  𝐵  →  𝐵  =  [ 𝐶 ] 𝑅 ) ) ) | 
						
							| 5 |  | elecALTV | ⊢ ( ( 𝑥  ∈  V  ∧  𝐶  ∈  [ 𝑥 ] 𝑅 )  →  ( 𝐶  ∈  [ 𝑥 ] 𝑅  ↔  𝑥 𝑅 𝐶 ) ) | 
						
							| 6 | 5 | el2v1 | ⊢ ( 𝐶  ∈  [ 𝑥 ] 𝑅  →  ( 𝐶  ∈  [ 𝑥 ] 𝑅  ↔  𝑥 𝑅 𝐶 ) ) | 
						
							| 7 | 6 | ibi | ⊢ ( 𝐶  ∈  [ 𝑥 ] 𝑅  →  𝑥 𝑅 𝐶 ) | 
						
							| 8 |  | simpll | ⊢ ( ( (  EqvRel  𝑅  ∧  𝑥  ∈  𝐴 )  ∧  𝑥 𝑅 𝐶 )  →   EqvRel  𝑅 ) | 
						
							| 9 |  | simpr | ⊢ ( ( (  EqvRel  𝑅  ∧  𝑥  ∈  𝐴 )  ∧  𝑥 𝑅 𝐶 )  →  𝑥 𝑅 𝐶 ) | 
						
							| 10 | 8 9 | eqvrelthi | ⊢ ( ( (  EqvRel  𝑅  ∧  𝑥  ∈  𝐴 )  ∧  𝑥 𝑅 𝐶 )  →  [ 𝑥 ] 𝑅  =  [ 𝐶 ] 𝑅 ) | 
						
							| 11 | 10 | ex | ⊢ ( (  EqvRel  𝑅  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 𝑅 𝐶  →  [ 𝑥 ] 𝑅  =  [ 𝐶 ] 𝑅 ) ) | 
						
							| 12 | 7 11 | syl5 | ⊢ ( (  EqvRel  𝑅  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ∈  [ 𝑥 ] 𝑅  →  [ 𝑥 ] 𝑅  =  [ 𝐶 ] 𝑅 ) ) | 
						
							| 13 | 1 4 12 | ectocld | ⊢ ( (  EqvRel  𝑅  ∧  𝐵  ∈  ( 𝐴  /  𝑅 ) )  →  ( 𝐶  ∈  𝐵  →  𝐵  =  [ 𝐶 ] 𝑅 ) ) | 
						
							| 14 | 13 | 3impia | ⊢ ( (  EqvRel  𝑅  ∧  𝐵  ∈  ( 𝐴  /  𝑅 )  ∧  𝐶  ∈  𝐵 )  →  𝐵  =  [ 𝐶 ] 𝑅 ) |