Metamath Proof Explorer


Theorem erim2

Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 in a more convenient form , see also erim ). (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion erim2 R V EqvRel R dom R / R = A A = R

Proof

Step Hyp Ref Expression
1 relcoels Rel A
2 1 a1i R V EqvRel R dom R / R = A Rel A
3 eqvrelrel EqvRel R Rel R
4 3 ad2antrl R V EqvRel R dom R / R = A Rel R
5 brcoels x V y V x A y u A x u y u
6 5 el2v x A y u A x u y u
7 simpll EqvRel R dom R / R = A u A x u EqvRel R
8 simprl EqvRel R dom R / R = A u A x u u A
9 simplr EqvRel R dom R / R = A u A x u dom R / R = A
10 8 9 eleqtrrd EqvRel R dom R / R = A u A x u u dom R / R
11 simprr EqvRel R dom R / R = A u A x u x u
12 eqvrelqsel EqvRel R u dom R / R x u u = x R
13 7 10 11 12 syl3anc EqvRel R dom R / R = A u A x u u = x R
14 13 eleq2d EqvRel R dom R / R = A u A x u y u y x R
15 elecALTV x V y V y x R x R y
16 15 el2v y x R x R y
17 14 16 bitrdi EqvRel R dom R / R = A u A x u y u x R y
18 17 anassrs EqvRel R dom R / R = A u A x u y u x R y
19 18 pm5.32da EqvRel R dom R / R = A u A x u y u x u x R y
20 19 rexbidva EqvRel R dom R / R = A u A x u y u u A x u x R y
21 20 adantl R V EqvRel R dom R / R = A u A x u y u u A x u x R y
22 simpll EqvRel R dom R / R = A x R y EqvRel R
23 simpr EqvRel R dom R / R = A x R y x R y
24 22 23 eqvrelcl EqvRel R dom R / R = A x R y x dom R
25 24 adantll R V EqvRel R dom R / R = A x R y x dom R
26 eqvrelim EqvRel R dom R = ran R
27 26 ad2antrl R V EqvRel R dom R / R = A dom R = ran R
28 27 eleq2d R V EqvRel R dom R / R = A x dom R x ran R
29 dmqseqim2 R V Rel R dom R / R = A x ran R x A
30 3 29 syl5 R V EqvRel R dom R / R = A x ran R x A
31 30 imp32 R V EqvRel R dom R / R = A x ran R x A
32 28 31 bitrd R V EqvRel R dom R / R = A x dom R x A
33 eluni2 x A u A x u
34 32 33 bitrdi R V EqvRel R dom R / R = A x dom R u A x u
35 34 adantr R V EqvRel R dom R / R = A x R y x dom R u A x u
36 25 35 mpbid R V EqvRel R dom R / R = A x R y u A x u
37 36 ex R V EqvRel R dom R / R = A x R y u A x u
38 37 pm4.71rd R V EqvRel R dom R / R = A x R y u A x u x R y
39 r19.41v u A x u x R y u A x u x R y
40 38 39 bitr4di R V EqvRel R dom R / R = A x R y u A x u x R y
41 21 40 bitr4d R V EqvRel R dom R / R = A u A x u y u x R y
42 6 41 syl5bb R V EqvRel R dom R / R = A x A y x R y
43 2 4 42 eqbrrdv R V EqvRel R dom R / R = A A = R
44 43 ex R V EqvRel R dom R / R = A A = R