| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpgti.a |
|- A e. NN0 |
| 2 |
|
dpgti.b |
|- B e. RR+ |
| 3 |
1
|
nn0rei |
|- A e. RR |
| 4 |
|
10re |
|- ; 1 0 e. RR |
| 5 |
|
10pos |
|- 0 < ; 1 0 |
| 6 |
4 5
|
pm3.2i |
|- ( ; 1 0 e. RR /\ 0 < ; 1 0 ) |
| 7 |
|
elrp |
|- ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) |
| 8 |
6 7
|
mpbir |
|- ; 1 0 e. RR+ |
| 9 |
|
rpdivcl |
|- ( ( B e. RR+ /\ ; 1 0 e. RR+ ) -> ( B / ; 1 0 ) e. RR+ ) |
| 10 |
2 8 9
|
mp2an |
|- ( B / ; 1 0 ) e. RR+ |
| 11 |
|
ltaddrp |
|- ( ( A e. RR /\ ( B / ; 1 0 ) e. RR+ ) -> A < ( A + ( B / ; 1 0 ) ) ) |
| 12 |
3 10 11
|
mp2an |
|- A < ( A + ( B / ; 1 0 ) ) |
| 13 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
| 14 |
2 13
|
ax-mp |
|- B e. RR |
| 15 |
1 14
|
dpval2 |
|- ( A . B ) = ( A + ( B / ; 1 0 ) ) |
| 16 |
12 15
|
breqtrri |
|- A < ( A . B ) |