Metamath Proof Explorer
Description: Comparing two decimal expansions (equal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
dplt.a |
|- A e. NN0 |
|
|
dplt.b |
|- B e. RR+ |
|
|
dplt.d |
|- C e. RR+ |
|
|
dplt.1 |
|- B < C |
|
Assertion |
dplt |
|- ( A . B ) < ( A . C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dplt.a |
|- A e. NN0 |
2 |
|
dplt.b |
|- B e. RR+ |
3 |
|
dplt.d |
|- C e. RR+ |
4 |
|
dplt.1 |
|- B < C |
5 |
1 2 3 4
|
dp2lt |
|- _ A B < _ A C |
6 |
1 2
|
dpval3rp |
|- ( A . B ) = _ A B |
7 |
1 3
|
dpval3rp |
|- ( A . C ) = _ A C |
8 |
5 6 7
|
3brtr4i |
|- ( A . B ) < ( A . C ) |