Metamath Proof Explorer


Theorem dplt

Description: Comparing two decimal expansions (equal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dplt.a
|- A e. NN0
dplt.b
|- B e. RR+
dplt.d
|- C e. RR+
dplt.1
|- B < C
Assertion dplt
|- ( A . B ) < ( A . C )

Proof

Step Hyp Ref Expression
1 dplt.a
 |-  A e. NN0
2 dplt.b
 |-  B e. RR+
3 dplt.d
 |-  C e. RR+
4 dplt.1
 |-  B < C
5 1 2 3 4 dp2lt
 |-  _ A B < _ A C
6 1 2 dpval3rp
 |-  ( A . B ) = _ A B
7 1 3 dpval3rp
 |-  ( A . C ) = _ A C
8 5 6 7 3brtr4i
 |-  ( A . B ) < ( A . C )