Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal expansions (equal higher places).  (Contributed by Thierry Arnoux, 16-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | dplt.a | |- A e. NN0 | 
					
						|  |  | dplt.b | |- B e. RR+ | 
					
						|  |  | dplt.d | |- C e. RR+ | 
					
						|  |  | dplt.1 | |- B < C | 
				
					|  | Assertion | dplt | |- ( A . B ) < ( A . C ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dplt.a |  |-  A e. NN0 | 
						
							| 2 |  | dplt.b |  |-  B e. RR+ | 
						
							| 3 |  | dplt.d |  |-  C e. RR+ | 
						
							| 4 |  | dplt.1 |  |-  B < C | 
						
							| 5 | 1 2 3 4 | dp2lt |  |-  _ A B < _ A C | 
						
							| 6 | 1 2 | dpval3rp |  |-  ( A . B ) = _ A B | 
						
							| 7 | 1 3 | dpval3rp |  |-  ( A . C ) = _ A C | 
						
							| 8 | 5 6 7 | 3brtr4i |  |-  ( A . B ) < ( A . C ) |