Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal expansions (equal higher places).  (Contributed by Thierry Arnoux, 16-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | dplt.a | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | dplt.b | ⊢ 𝐵  ∈  ℝ+ | 
					
						|  |  | dplt.d | ⊢ 𝐶  ∈  ℝ+ | 
					
						|  |  | dplt.1 | ⊢ 𝐵  <  𝐶 | 
				
					|  | Assertion | dplt | ⊢  ( 𝐴 . 𝐵 )  <  ( 𝐴 . 𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dplt.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | dplt.b | ⊢ 𝐵  ∈  ℝ+ | 
						
							| 3 |  | dplt.d | ⊢ 𝐶  ∈  ℝ+ | 
						
							| 4 |  | dplt.1 | ⊢ 𝐵  <  𝐶 | 
						
							| 5 | 1 2 3 4 | dp2lt | ⊢ _ 𝐴 𝐵  <  _ 𝐴 𝐶 | 
						
							| 6 | 1 2 | dpval3rp | ⊢ ( 𝐴 . 𝐵 )  =  _ 𝐴 𝐵 | 
						
							| 7 | 1 3 | dpval3rp | ⊢ ( 𝐴 . 𝐶 )  =  _ 𝐴 𝐶 | 
						
							| 8 | 5 6 7 | 3brtr4i | ⊢ ( 𝐴 . 𝐵 )  <  ( 𝐴 . 𝐶 ) |