Metamath Proof Explorer
Description: Comparing two decimal expansions (equal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
dplt.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
dplt.b |
⊢ 𝐵 ∈ ℝ+ |
|
|
dplt.d |
⊢ 𝐶 ∈ ℝ+ |
|
|
dplt.1 |
⊢ 𝐵 < 𝐶 |
|
Assertion |
dplt |
⊢ ( 𝐴 . 𝐵 ) < ( 𝐴 . 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dplt.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dplt.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
|
dplt.d |
⊢ 𝐶 ∈ ℝ+ |
4 |
|
dplt.1 |
⊢ 𝐵 < 𝐶 |
5 |
1 2 3 4
|
dp2lt |
⊢ _ 𝐴 𝐵 < _ 𝐴 𝐶 |
6 |
1 2
|
dpval3rp |
⊢ ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 |
7 |
1 3
|
dpval3rp |
⊢ ( 𝐴 . 𝐶 ) = _ 𝐴 𝐶 |
8 |
5 6 7
|
3brtr4i |
⊢ ( 𝐴 . 𝐵 ) < ( 𝐴 . 𝐶 ) |