Metamath Proof Explorer


Theorem dplti

Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dplti.a 𝐴 ∈ ℕ0
dplti.b 𝐵 ∈ ℝ+
dplti.c 𝐶 ∈ ℕ0
dplti.1 𝐵 < 1 0
dplti.2 ( 𝐴 + 1 ) = 𝐶
Assertion dplti ( 𝐴 . 𝐵 ) < 𝐶

Proof

Step Hyp Ref Expression
1 dplti.a 𝐴 ∈ ℕ0
2 dplti.b 𝐵 ∈ ℝ+
3 dplti.c 𝐶 ∈ ℕ0
4 dplti.1 𝐵 < 1 0
5 dplti.2 ( 𝐴 + 1 ) = 𝐶
6 rpre ( 𝐵 ∈ ℝ+𝐵 ∈ ℝ )
7 2 6 ax-mp 𝐵 ∈ ℝ
8 1 7 dpval2 ( 𝐴 . 𝐵 ) = ( 𝐴 + ( 𝐵 / 1 0 ) )
9 10re 1 0 ∈ ℝ
10 10pos 0 < 1 0
11 9 10 pm3.2i ( 1 0 ∈ ℝ ∧ 0 < 1 0 )
12 elrp ( 1 0 ∈ ℝ+ ↔ ( 1 0 ∈ ℝ ∧ 0 < 1 0 ) )
13 11 12 mpbir 1 0 ∈ ℝ+
14 divlt1lt ( ( 𝐵 ∈ ℝ ∧ 1 0 ∈ ℝ+ ) → ( ( 𝐵 / 1 0 ) < 1 ↔ 𝐵 < 1 0 ) )
15 7 13 14 mp2an ( ( 𝐵 / 1 0 ) < 1 ↔ 𝐵 < 1 0 )
16 4 15 mpbir ( 𝐵 / 1 0 ) < 1
17 0re 0 ∈ ℝ
18 17 10 gtneii 1 0 ≠ 0
19 7 9 18 redivcli ( 𝐵 / 1 0 ) ∈ ℝ
20 1re 1 ∈ ℝ
21 nn0ssre 0 ⊆ ℝ
22 21 1 sselii 𝐴 ∈ ℝ
23 19 20 22 ltadd2i ( ( 𝐵 / 1 0 ) < 1 ↔ ( 𝐴 + ( 𝐵 / 1 0 ) ) < ( 𝐴 + 1 ) )
24 16 23 mpbi ( 𝐴 + ( 𝐵 / 1 0 ) ) < ( 𝐴 + 1 )
25 8 24 eqbrtri ( 𝐴 . 𝐵 ) < ( 𝐴 + 1 )
26 25 5 breqtri ( 𝐴 . 𝐵 ) < 𝐶